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Abstract

The application of conformal mapping methods to
the solution of free-surface flow problems is considered.
Methods of numerical conformal mapping based on Fourier
series are extended to handle efficiently problems with
time-dependent boundaries. They are shown to be
practicable only for moderately distorted geometries.
Extensions of the Menikoff-Zemach method to 'breaking'
geometries are preseﬁted. These latter methods are
robust at quite large distortions, but degrade
prematurely in time~dependent problems at amplitudes

smaller than achieved by our recent vortex methods.,
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1. INTRODUCTION
Inthis paper, we investigate the application of
conformal mapping to the sclution of time-dependent
potential flow problems, such as Rayleigh-Taylor instability
and water waves. We begin by formulating the water wave
problem. For two-dimensional, incompressible, irrotational,

free-surface flow, the velcrity is expressible as v = V¢,

where the potential ¢ satisfies Laplace's equation
V2¢ = 0 in the region y<n(x,t) beneath the free
surface y = n(x,t). Since the free surface moves with

the fluid,

Dx D

Bt = ®x' by = by, (v = nlx,t)), (1.1)

where D/Dt 1is a Lagrangian derivative. Bernoulli's
law is satisfied throughout the fluid so that
1 2

D .
5% = - n(x,t) + 5v° - pg (1.2)

at the free surface y = n(x,t), where the gravitational
acceleration is normalized to unity and Pg is the
applied surface pressure. It is assumed below that the

free surface is periodic in x with wavelength 2m.




In order to march forward in time, it is necessary
to know V¢ at the free surface. If ¢ is known then
its tangential derivative 3¢ /9s is computable but its
normal derivative 23¢/3n must be found by solving

Laplace's equation. Green's third formula expresses

9¢/9n in terms of ¢ :

| iaﬁ; in|p-q|é(g)dg ~ 'ng tn |p-ql 'g%(g)dg = 2m¢ (p) .

(1.3)

Here p,g are vectors lying on the boundarv 3D of the
region D, Egq. (1.3) 1is a linear integral eguation of
the first kind for the unknown function 3¢/3n. Once
3¢ /3n has been calculated, Eq. (1.1) and (1.2) may
be used to update the free surface and potential.
Numerical soiution of (1.3) for 9¢/3n involves
the approximation of its logarithmic kernel by a finite

matrix. If the continuous boundary is approximated by N

discrete points, the overation count for the solution of

is full. In addition, storage of the matrix requires
O(Nz) memory locations. For large N the computational

| the resulting linear system is 0(N3) since the matrix
[
:
E costs are prohibitive.

|

:

|
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Our work is motivated by the desire to aevelop
algorithms with decreased operation counts and storage
requirements for solving free surface potential flow
problems. We have recently proposed a new vortex
methoé'go solve these problems with O0(N) memory and

O(Nz) operations per time step. 1In the present paper, 1

two conformal mapping methods are studied. Both require

only O(N) memory. The methods discussed in Sec. 2
require only O(N log2 N) operations per time step but
are effectively limited to modest surface deformations.

In Sec. 3, modifications of the Menikoff-Zemach method10
that require 0(N2) operationy per time step are introduced.

Larger surface deformations can be handled accurately by J
these latter methods.
2. CONFORMAL MAPPING USING FOURIER SERIES

In this Section, numerical methods are developed
to compute the conformal map z(z) of the unit disk

[z]<1 onto a simply connected finite region D in the

complex~-z plane. A map of the unit disk onto a semi-
infinite periodic region R: w = x+iy, 0 < x < 2m, y< n(x),

is given by

w=1in z(zg) (2.1)

where z(z) is a map of the unit disk onto the interior

of the region with boundary




-

2 =-exp[-ix + n(x)].

This sequence of conformal maps is depicted in Fig. 1.
Before proceeding to the discussion of methods to
compute the conformal map 2(Z), we note that knowledge
of z(z) allows efficient solution of potential
problems in the region R. If ¢(w) is harmonic in R
then ¢{(i #n 2(z)) is harmonic in the unit disk.
Therefore, the Dirichlet problem can be solved by
Poisson's formula. Also, since conformal maps are angle

preserving, the normal derivative 3¢/9n of ¢ on the

boundary .: R 1is related to the radial derivative

3¢/3p of ¢ on || =p=1:

3¢ =3 z(t) |
on y=ﬂ(X) apip=1 g_g 5 =1 (2.2) ,

The derivative dz/dz can not vanish for |g|<l if
2(z) is single-valued.

Let us begin by characterizing the analytic character

of z(z) in terms of Fourier series. The boundary values

z(ela) of the conformal map z(z) are a periodic function 5

of the angle o on the unit disk so




z(eiq A e (2.3)

The condition that z(z) be analytic is
A =0, k<0 o | (2.4) o
and, in this case, z(f) 1is given explicitly by

z(g) = £ AT (2.5)

In other words, an analytic transformation of the unit
disk onto a region D is equivalent to a parametrization
of 098D in terms'of o such that the Fourier representation
of 3D has only positive frequency components.
Now we consider a discrete approximation to the

conformal map. Consider the equally spaced discrete points

aj =0y (j =0, ... N-1), where o = 2n/N, and the associated

points zj on aD. Then zj can be represented as the

finite Pourier series

zy = z(e*%9) = 5§ a ¥ (o<i<n). (2.6)
‘N N
—2k<3

It may easily be shown that




v

p#0
é One way to determine an approximation to the conformal
i
map z(z) 1s to require that a, = 0 for k<0. Indeed,
} if N is large enough that Ak is negligible for k>N,
then a is negligibly small for k< 0. This idea may

k

be used to obtain iterative methods?™8

based on the fast
Fourier transform (FFT) to compute the avproximate conformal

map. These methods typically require O(N fog,N) operations

per iteration. We note that for any ay satisfying
H a =0 for k<0, the resulting conformal map
i
z(g) = ) a, ck _ (2.8)
0<k<N/2
satisfies z(elcj) = zj. Thus, the map z transforms the
ioj

N equally spaced points e into points zj lying on
aD.

As an alternative to these iterative methods, we have
obtained a differential equation which relates the time rate
of change of the conformal map to the time rate of change
of @ moving boundary. This differential equation is

well suited to the solution of free surface flow problems

where the solution of the potential problem determines the

time rate of change of the free surface.




Let the boundary be represented for all time t

by the equation

F(z(a,t), z(a,t),t) = 0. (2.9)

Differentiation of (2.8) with respect to t vyields

L=+
@
N|

+ F
2

[+%]
N

|
=
|
+
|
=
|
I

Q
t
Q
+

0, (2.10)

and differentiation with respect to the angle a (see Fig. 1)

gives

oz, 3F
Z Jo 3%

(V)
o

+
|
i
fl
o

(2.11)

[+%

The relation

2 or
3t | _ i 3t

™z=)"2 wae 2-12)
oa Z dd

is obtained by substituting (2.11) into (2.10). This
equation only provides the imaginary part of %%/%g .
The real part of %%/%g is determined by requiring that it
be analytic in the domain described by (2.9).

The right hand side of (2.12) 1is real and can be

represented by a conjugate symmetric Fourier series:




MA

i s
2 F 3z - Re mZo b exp(ima)
3z Ja

Therefore, analytic continuation of (2.12) gives

>N-1
3z _ ;32" ¢ 4
3t 30 Lo b exp(ima) (2.13)
where
-1
g-g =7 (ik)a, exp ika) (2.14)
k=0

The right hand side of Eq. (2.12) is directly related

to the normal velocity of the moving boundary. In Cartesian

coordinates !
F(z,z,t) = y = nix,t) | (2.15)

so |
%%= - 'g% (2.16)

Also,
e =z Gr-igpGa+igh ' (2.17)




Substitution of (2.16) and (2.17) into (2.12) gives

2z
2t e
Im| 9z J= (2.18)
ox an 3
W/ 55 * 3% 9%

The free surface condition {(1.1) can be written

as
ﬁ= -a—-y-" —a—iﬁ (2.19)

Using the decomposition of 23¢/3x and 3¢/3y into

tangential and normal components

3¢ 3y 36 _ dx 3¢

y <5§'—§' s §H>

3¢ _ (3x 3¢ , 3y 3¢ :

Ix ( s 9s ' 3s 3n> ' - (220

in (2.18) gives the final result in terms of the polar

coordinates ‘ p and o
2z
at 2
mm|oz| =-232¢ |z (2.21)
) — o )
aa p=1 lﬁ

An analogous result was obtained using perturbation methods

by Kantorovich and Krylov.8

-10-
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Eq. (2.21) describes the motion of points following i
the conformal map of the free surface rather than the
Lagrangian or Eulerian paths. Bernoulli's equation
(1.2) must also be modified to take this fact into

account:

\ : (2.22)

Ty
&lale

- Once the conformal map (2.4) from the unit circle
is known, the solution of the Dirichlet problem may be

given in terms of a Fourier series

1
'2-N-l
o (pe®) = ) (g

p" cosna + h_ o™ sinn al (2.23)
n=0

n

On the unit circle (p = 1) the tangential and normal -

derivatives are given by

1

5N-1
9 _ 2 - i
e n£0 [-ng sinna +n h cosna ] (2.24)
1
N-1
3¢ _ 2 ~
50 n£0 [ng, cosna + nh sinnal, (2.25)

which are computable using FFT's in O(N ZogzN) operations.




Now let us summarize the steps involved in marching
from time t to t + At by this method. At time t,
the points {zj} and potentials {¢j} are assumed known.

First, the coefficients g _, h in (2.23) are obtained

n
from {¢j} using an FFT. Next, V¢ is computed on the

n

boundary using (2.24) and (2.25). Then ¢j is
updated by (2.22) and zj is ﬁpdated by (2.21).

The total operation count is O0(N 200y N). Note that the
conformal map is uniquely defined by (2.21) and the
supplementary conditions a

0= 0, Im(a = 0.

l)
As a test of this time dependent mapping method,

we study the propagation of Stokes' permanent water waves.

In a frame of reference moving with the wave speed, the

numerically calculated profiles should be steady. The

initial conditions for the calculation are obtained using

Padé approximants of perturbation expansions of the Stokes

wavesll. The time-dependent equations (2.21), (2.22)

are solved by a fourth-order Adams-Moulton predictor

corrector scheme. As with other simulations of propagating

2’9

nonlinear water waves, an instability of the free

surface quickly develops unless damping is applied. To

remove this instability, we periodically apply a five-=
point smoothing operatorg.
For a Stokes wave with peak-to-trough amplitude 80%

of the maximum allowed by theory, we choose the time step

to be 27/400 with wavelength 21 and apply smoothing




every tenth step. The resulting wave profile is plotted
in Fig. 2. The dots indicate the position of the points
zj used to calculate the conformal map of the wave.
The solid line is the wave profile computed by Padé approximants
translated by an amount equal to the nonlinear phase speed
multiplied by the time. The computation time for one
evaluation of the time derivatives of the map and potential
is 3ms on the CRAY-1 computer using N = 64 points. The
total computation time for the motion of the wave through
one period is about 1ls.

The conformal mapping method described here works
well provided the region is not highly distorted. As
the region of interest becomes more distorted the points
corresponding to the conformal map tend to crowd3’10.
For example, consider.the conformal mapping from the unit
disk to the region lying below y = A coskx. The number
of terms N that must be retained in the Fourier expansion
(2.4) to obtain a good representation of this map satisfies

‘n‘ .
¢n N ~¥kA as kA -» m,3 where ¥ = %- / S1DX ax ~ 2,909,

X
0
showing the difficulty of mapping from the unit disk to a

deformed region.

When N is large, almost all of the equally spaced
X iojy .
points e ~J on the unit circle are mapped into points

zj that are crowded into small intervals on. the boundary

3

of the domain D. Dubiner” has recently made a detailed

analysis of this problem and has shown that the crowding

occurs whenever the region being mapped has a 'narrow'

11

14




section. This effect occurs in high amplitude Rayleigh-

Taylor instability and in breaking waves. The FFT method

is not effective in dealing with these highly distorted
geometries.
When the domain D is highly deformed, the iterative

methods? ™8

and our differential equation method do give a
conformal map of the unit disk onto a domain that passes
through the desired points zj of» aD. However, unless N
is unreasonably large, the conformal map so obtained

will have large deviations from 3D between the points

z.. Indeed, (2.8) gives an accurate conformal map of

J
3D only if a decreases rapidly as k increases to

k

7. ,

One possible approach to the crowding problem is
to use a sequence of mappings of the disk onto successively
more highly deformed regions. Such iterated mappings
are still under study. For such methods, one result seems
assured, namely that the operation counts must degrade
from O(N 9,og2 N) to O(Nz) or worse. In this case,
these Fourier series methods are probably inferior to the
methods to be described in Sec. 3. .
3. APPLICATION OF THE MENIKOFF-ZEMACH METHOD

The Fourier series methods for mapping the unit disk

onto D can not accurately handle highly distorted domains

as the crowding phenomenon causes a severe loss of resolution

~-14-




in some part of the physical boundary. This difficulty
may be overcome by mapping D onto the unit disk with
a reqular distribution of points on 3D. The crowding
then occurs on the boundary of the unit disk. Even
with a highly nonuniform distribution of points on the
unit circle, the potential problem in the unit disk isg
still readily solved by Poisson's formula.

Recently, Menikoff and Zemach10 have developed a
new nonlinear integral equation for conformal mapping
of the region R above Y = n(x) onto the periodic
semi-infinite strip §$:0<u<2m, 0<v<e , Their method
requires relatively few points to achieve accurate

results for distorted domains.

A simple extension of Menikoff and Zemach's equation
which is valid for general periodic interfaces is
derived here and is used to investigate the crowding
pPhenomenon for multivalued (or ‘'breaking wave') interfaces.
A time dependent version of the equation is also developed.
This approach reduces to the integration of N nonlinear
differential equations. ‘

The Menikoff-Zemach equations, generalized to handle
conformal maps of a domain with boundary curve parametrized

as x = x(e), y = yl(e), are

-15-
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1

27 .5 '
v =y, v 2 [ln SnZmENED) 4 g,
0 sin 5(e-e') de' '€ 2r
27 —at de!
+ [ cot (555 [(x(e')-e") - (x(e)-e)] S (3.1a)
0
2m in T(u(e)-u(e")) | dy de’
u(e) = x(e) - x_+ 2 [ 1n 2in lule ule | 3%' 7%—
. 0 sin 5(e-e') |
2m e-e' de'
+ é cot () ly(e')-y(e)] 5= . (3.1b)
Here e 1is chosen so that x(0) = 0, x(27) = 27, u(e)

is defined so (x(e),y(e)) is mapped into (u(e),0), and
Y,rX, are determined by the condition that u(0) = 0.

Note that (3.l1la) and (3.1b) are equivalent; either one
can be used to determine u(e). Once u(e) is found by
solution of (3.1), the conformal map is determined.

Egs. (3.1) are derived from the paif of Hilbert

transforms:
2“ e L
Re[G(u,0)] = Re(G ) - P [ cot (2% )Im[G(u',01SY
0 0 2 2%

(3.2a)

~-16-
e o e
_ ————— —— R OU SR S




2‘" ] ]
Im(G(u,0) = Im(G,) + P [ cot(F2)RelG(u’,0)] J2-
0

(3.2b)

where G(W) is analytic in the upper-half W-plane and
GW) = G_ + 0(1/|w|]) as |W|+®. Eq. (3.1) follows
if G = x + iy-W, where W = u+iv.

The Hilbert transforms (3.2) are also useful for
solving potential problems in the region R. If the map
function uf(e) is known, boundary values of a potential
¢ on OISR may be related to corresponding boundary values

of a potential ¢ defined in the strip S in the W-plane:

d(u) = ¢ (e)

34, . o fdu ' (3.3)

du -0 os/ de

29 _20ds fau
ov. =0 an de / de

where s and n are the tangential and normal directions
to 3R. The tangential and normal derivatives of ® are
the real and imaginary parts of an analytic function in S

so they are related by the Hilbert transform:

27
3¢ ds _ 1 _ ' dé ,_+yGu _d du 'y jde'
- é cot 3 (ule)-u(e")) (gzle")ga(e)-ghiergg (e") )5z

(3.4)




Note that in the application of (3.4) it is necessary
to compute du/de with some care. We have found it best
to find du/de by using the Hilbert transform of
2n dz/dw to obtain an equation for £n du/de.

In order to examine the crowding properties of domains
bounded by breaking waves, we use (3.1) to compute the i

function u(e) for the periodic curve

x (e) e + b sin e

(3.5)

n

y(e) 0.4 sin e.

For b <1, the curve is a single valued function of x.

For b =1, the curve has a wvertical slope at e = T,

and for b>1, the function is multivalued. 1In Fig. 3,
the curves (3.5) are plotted for b % 1,1.5, and 2.0.

The map function u(e) must be a monotonically increasing
function of e. Therefore du/de>0 although it can be
exponentially small due to crowding. The functions u(e)
and du/de are tabulated for the curves (3.5) in

Table 3.1. Another measure of the crowding is given by

Ln (%g). In Fig. 4, nn(gg) is plotted for various values
of b to reveal the exponetial nature of the crowding

phenomenon. As b increases, the crowding rapidly becomes
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severe even though the amplitude of the wave (3.5) is
quite modest. Similar crowding should be expected in
any dynamic simulation of a breaking wave.

It is also possible to formulate a set of differential
equations based on the Menikoff-Zemach approach to map
a time-dependent boundary. For parametrized boundaries
of the form (x(e,t),y(e,t)), the mapping function ul(e,t)

is determined by

X 9IX v 3
au _ Mo 3t 36 * 3% 5% \
t = at (35,2 = (3.6)

de
] X X 0

2m . FieE(e') - E(e') (e

+ f cot(u(e);u(e )) ot de ot e
0 ds

97 9X 9x 3
_ —:‘t'(P)'a'"é‘(e) 'ﬁ(e)%(e) (§3(e.))2 de'
de 2m

2
ds
(ag(e )

ds,2 _ 3x,2 3y, 2 .
where (53) = (ae) + (ae) and uo(t) is chosen so that
u(0) = 0.

Given the values of u,¢,x, and y at some time t

the time stepping algorithm proceeds as follows: First,

the values of u(e), x(e) and y(e) are used to determine

il




the map derivative dq/de. Next, the normal velocities
3¢/9n can be computed from (3.4). Once 23¢/9s and
9¢/9n are known, the boundary curve (x(e,t),y(e,t))
can be marched to the next time step. Then, Bernoulli's
equation (1.2) gives the boundary values of ¢ at the
next step. Finally, the map Eq. (3.6) is used to march
u forward in time.
We have tested the time dependent mapping equation (3.6)
on the mapping of the region bounded by a cosine curve of

increasing amplitude,

|
(1]

x{e,t)

(3.7)

y(e,t) t cos(e)

and on the regions bounded by a time dependent version of

the breaking curves (3.5),

x(e,t) e + t sine

(3.8)

n

y(e,t) 0.4 sine.

A fourth order Adams-Moulton predictor-corrector scheme
was used to march the map function ule,t) forward in time.
At the times tabulated in Tables 2 and 3, the mapping

function was corrected by solving (3.1). The time integration




was then restarted with the corrected values of u(e).
The maximum error for a given time is given in Tables
2 and 3 for 32, 64 and 128 points. The minimum of the
function du/de for each time is also listed to give
an indication of the crowding. The error for moderate
distortions was fairly insensitive to reductions in the
time step At but was reduced markedly when the number
of points was increased. In regions of severe crowding
the time step must be very small in order to ensure
accuracy for an explicit integration scheme. Too large
a time step can destroy the monotonicity of u(e).

We have also applied the integral equation (3.1)

and time-dependent evolution equation (3.6) to the

numerical simulation of Rayleigh-Taylor instability. The
initial conditions for the Rayleigh-Taylor problem are

as follows. Fluid of density 1 lies above the periodic

interface
y(e,t = 0) = 0.5 cos(e)

and is initially at rest. Below the interface, there is

a vacuum. The resulting flow is unstable under gravitational

acceleration. The results plotted in Fig. 5 are obtained




using the integral equation (3.1). With 60 points per
wavelength, we were unable to continue the calculation

past a time of t=~3.5 at whichthe amélitude to wavelength
ratio of the spike (at x =im) is about 5.4/2m = 0.86.

The degree to which the total energy and the rate of mass
flux are conservedgives a good indication of the reliability

of the simulation. After a time of 3.0, there is a

progressive degradation of conservation of these quantities.
This deterioration is also reflected in the spike
acceleration. For large t, the svike should be nearly J
infree fall with an acceleration of -1.0 in our units.l
In contrast, the present simulation shows a spike acceleration 1
which decreases (in absolute value) below 1.0 after t = 3.0.
Hence we conclude that the results are not reliable beyond

t = 3.0. Similarly, the time-dependent evolution eguation

(3.6) gives results for this problem that are reliable
only until t=x 3.0.

The present conformal mapping methods give results

for Rayleigh-Taylor instabilitv that are quite good. The
amplitude/wavelength ratio has increased by about a factor

10 before the 60 point calculations degrade. Menikoff

and Zemach (private communication) obtain similar
;mplifications before their calculations break down. However,
the reasons for degradation of the calculations at large time

remain unclear. On the one hand, the conformal mapping

methods described in this Section are capable of resolving




much more highly deformed interfaces than achieved at
breakdown, even with 60 points. On the other hand,

1,2 have been used to calculate

new vortex methods
Rayleigh-Taylor instability with similar spatial
resolution to at least twice the amplifications achieved
here. It seems that our method of coupling free-surface
dynamics and conformal mapping introduces numerical
inaccuracies (observed as rapid oscillations of ¢ and
n for t>3.0). It is possible that this deficiency
may be corrected by more sophisticated conformal mapping
techniques3.
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Table 1. Mapping functions for the 'breaking' curves (3.5).* .
F =2
‘ b= 1.0 b =1.5 b=2.0 ;
. du  du du 5
k e u( e Ty u(e) Ty u(e) Ty ‘.
0 0.0 1.9239 0.0 2.3575 0.0 2.7670 %
™ j
T 1.5706 1.9648 1.8956  2.3030 2.2126  2.6351
LA 2.9331 1.4326 3.4076  1.4615 3.8677  1.4772 :
3n -1 -1 -1
3 3.7681 7.0083x10 4.1579  4.9413x10 4.5352  3.0688x10 |
; T 4.0981 2.0146x10"1  4.3201  4.7511x1072  4.6125  4.5852x107° .
5T, -1 -4 -7
27 .1841 7.7401x10 4.3387  6.4110x10 4.6131  9.8707x10 ?
= .4406 4.2459% 4.3440  4.0460x10 4.6131  3.2512x10
%% 5.2656 1.2741 4.7624  1.3178 4.6920  7.0508x107%

* The results were checked for 32 and 64 points and agreed to the

5 significant digits given here.




Table 2. Error in the conformal mapping of the time-dependent cosine

curves (3.7)*.

t Min(gg) Maximum Error (percent)
N = 32 N = 64 N = 128
1.0 2.23x107% 1.8x107° 3.0x10" 10 6.9x10 10
2.0 2.54x10 2 9.1x10"2 2.8x107° 1.2x1078
3.0 2.19x107° 6.9 3.1x1072 7.4x1077 ;
4.0 1.66x10™4 - 1.3 3.5x10° 4 §
-5 2 ‘

5.0 1.20x%10 ' "9.9 2.1x10°

* The time step is At = 0.001.
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Table 3. Error in the conformal mapping of the time-dependent

V'breaking' curves (3.8)*.

. ,du
t Min (33) Maximum Error (percent)

N = 32 N =64 N = 128

- _ -10 -
.8 1.85x10" 1 4.5x107° 3.2x10 1.6x10710
1.0 7.48x10"2 2.0x1073 3.1x10”/ 3.8x10 10
1.2 1.63x1072 3.9x1072 9.0x10™° 6.4x10"10

1.4 1.99x103 _— 4.9x10" 3 8.5x10"’

1.6 1.02x10"3 -— -— 9.5x10">

* The time step is At = 0.001 and 48-bit mantissa arithmetic is used,




Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure Captions

A schematic plot indicating the sequence of
conformal maps used to solve inviscid free
surface flow problems. Here the fluid lies
below the interface y = n(x,t) as in the
water wave problem,

A plot of the Stokes wave profile at t = 0]
and at t = 27. The amplitude is 80% of the
maximum Stokes wave amplitude. The FFT
time-dependent mapping equation (2.21)

is used with N = 64 points. The dots
indicate the numerically computed position

of the interface. The solid line is obtained
from Padé summation of the perturbation series
for Stokes waves.

A plot of y vs x for the 'breaking' curves
(3.5), x=e + b sine, y = .4 sine, for
b=1.0, 1.5, 2.0.

A plot of 2&n du/de for the breaking curves
flotted in Fig. 3 (a) b = 1.0, (b) b =1.5
(c) b= 2.0. Here the Menikoff-Zemach equation
(3.1) is solved for the conformal mapping function

u(e). Observe the exponentially strong crowding

for b>1,




R

Figure 5. A plot of the interface y(x,t) for the Rayleigh-
Taylor instability with initial conditions
y{x,t = 0) = 0.5 cosx¢(x,t) =0 for t = 0.5
to t = 3.5 in steps of 0.5. Here 60 points
per wavelength are used. Both the integral
equation (3.1) and time-dependent equation

(3.6) degrade significantly in accuracy for

t>3 at this spatial resolution,
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